
EXTENSION OF SIMPLE ONE-ZONE MODELS FOR RADIATIVE 

HEAT TRANSFER IN OVENS AND FURNACES 

S. P. Detkov UDC 536.3 

Results are established and interpolated for heat transfer formodels of limiting 
type with regard to surface configuration and bulk emission spectrum. 

i. Introduction. Hottel [i] has indicated that there are models extreme in surface 
configuration and has proposed interpolation formulas for heat transfer for intermediate 
models with a gray spectrum for the medium. Here analogous results are presented for an 
antigray spectrum of the medium. It has been pointed out [2-4] that any real spectrum falls 
in the range between gray and antlgray as regards the heat-transfer rate. Therefore, the 
results may be extended by recommending working formulas of interpolation type as regards 
bodyconfiguratlon and surface radiation spectrum. 

2. Six Characteristics of Simple One-Zone Models. 2.1. A system of bodies is repre- 
sented as three isothermal ones: Fo and F, with gray surfaces and the bulk of the real 
medium without allowance for scattering. As the bulk is not divided into zones, while its 
properties are decisive, such models are called one-zone ones. 

2.2 The surfaces may be divided into elements or parts and have different shapes such 
as those shown in Fig. i. The spatial figures may be approximated as spheres, cylinders, 
cubes, parallelepipeds, etc. Figure i is readily supplemented with a set of intermediate 
models ranging from the extreme one 1 with a uniform distribution of the elements dFo and 
dF, over a sphere to continuous concentric spheres or coaxial long cylinders, which may be 
called models 2 and 3 in accordance with the type of internal surface. Hottel considered 
figures 2' and 3' of [i] as extreme models, which are similar to a metallurgical or heating 
furnace, whereas figure i is an idealized model for a boiler furnace. Form 3', which might 
appear exotic, was used in [5] to simulate a rotating furnace. The concave lining becomes 
a heating surface as soon as it is freed from the mixture as the furnace rotates. The planar 
surface of the filling on the other hand resembles the lining at the same time. 

2.3. The surface F, is considered as an adiabatic lining. More precisely, it is assumed 
that the convective heat flux is equal to the thermal loss for it. 

2.4. One of the simplifications in the single-zone model is that one uses angular co- 
efficients calculated in the absence of the medium (the transmission of this is extracted 
from the integrals). The formulas for the coefficients are also simplified. For example, 
the self-lrradiation coefficient for the concave surface F, with surface Fo planar is calcu- 
lated as ~=|mP0/F.. Strictly speaking, this is permissible only for model 2 when the bodies 
are completely concentric or coaxial, or else for a plane-parallel layer as a particular case 
of model 2 when the radii of the bodies are infinite. In what follows we use the character- 
istic C = Fo/(Fo + F,). 

2.5. The surface radiation of the bulk is described by the gray or antigray spectra 
shown in Fig. 2. The antigray spectrum consists of bands and lines with square shapes, 
where the spectral absorptivity is one within them and zero between them. The concept of 
antigray means that it is opposite not only in form in Fig. 2 but also in heat-transfer char- 
acteristics. All real spectra lie in the range between gray and antigray as regards form 
and the heat fluxes at the surfaces or the temperature of the adiabatic lining obtained in- 
cidentally in solving the problem. The advantages of using gray and antigray spectra, which 
strictly speaking do not occur in practice, are increased in relation to the maximal simpli- 
fication of the calculations, particularly for the antigray spectrum. In particular, both 
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Fig. i. Transformation of one-zone models as regards 
body configuration: a) heating surface Fo; b) lining 
surface F,. 

Fig. 2. Simple models for the surface-radlgglon spec- 
trum for the bulk: I) gray; II) antigray| III) rec- 
tangular; IV) black. 

spectra enable one to use zonal equations, whereas the solution for any real spectrum is ob- 
tained as infinite series, which have so far been derived only for model I [3] and for a 
plane-parallellayer [6]. One is justified in using the extreme spectra not only by the 
simplifications. It is found that in most cases similar results are obtained and interpola- 
tion does not produce a substantial error. 

2.6. The differences in degree of blackness and absorptivlty of the bulk are incorpora- 
ted only in the first-order passage of the rays through the bulk. Then the density of the 
resultant flux at Fo is written as 

q po = A o K 6  (eI T ~ - -  a ,  T~o). (1) 

The multiple-reflection coefficient is extracted from the parentheses. One uses the degrees 
of blackness ei or the absorptivities ai in the formulas in accordance with the disposition 
of the sources. All the formulas below are written in terms of degrees of blackness for the 
case of fuel burning in the bulk, when T > To. 

3. Formulation. The essence of the treatment is to incorporate multiple reflections 
together with the real bulk spectrum~ One specifies the surfaces Fo and F,, the configura- 
tions of these, the optical characteristics of the bodies Ao, A,, E i, ax, and the tempera- 
tures T of the medium and To of the heating surface. The qpo, the density of the resultant 
flux at the heating surface, is given by (I). The temperature T, of the lining surface is 
found incidentally from the condition qp, = 0. The task amounts to determining the coeffi- 
cient K in (I). 

4. Multiple Reflection Coefficient. The quantities K, K', and K" in (i) denote the 
coefficients for the actual spectrum of the surface radiation from the bulk and for gray and 
antigray ones. The subscript 1-2 denotes the interpolation formula forthe extreme models 
1 and 2 involving the use of the interpolation factor M,a(S). The corresponding meaning at- 
taches to K,-s and M,s(S). The interpolation number i~ S~0 takes the extreme values S = 
1 for model i and S = 0 for models 2 or 3 and 2' or 3'. 

5. Body-Configuration Interpolation with a Gray Bulk. This case has been considered 
in detail in [I]. The chain of models i § 2 is described by 

KI -2=  l M12= ] - -e , - -  S(C--8,) (2) 
~ + A4~2AoC ( I  - -  ~,) ' 1 - -  C ~  - -  SC ( I  - -  ~) 

For the ideal model 1 for a boi ler  furnace, S = 1, we get M' = 1: 

K; = i (3) 
gl "l- AoC(1 - -e l )  

Hottel notes that formula (3) was known i n  1928 or even earlier. 

For S = 0 
A , I ~  = 1 - -  ~ K~ = 1 - - C ~  

1 - -  C~1 ' e l  (1 - -  C e l )  + A o C  ( 1 ~ el)~ " 
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TABLE i. Grayness Parameters for a Layer of the Medium with 
Optical Thickness xo Bounded by a Black Cold Surface and an 
Adiabatic Gray Surface with Specular Reflection for Any Re- 
flection Coefficient R,, t = IO00~ 

x 0 , c m  �9 arm 

O,i 
0,5 
1 
5 

10 

Carbon 
dioxide 

0,62 
0,36 
0,32 
0,31 
0,25 

Wamr vapor 

0,92 
O, 79 
0,72 
0,54 
0,49 

x0.cm �9 atm 

20 
30 

I00 
300 

Carbon 
dioxide 

0,25 
" 0,25 
0,25 

Water vapor 

0,42 
0,37 
0,33 
0,29 

This result was derived by Nevskii and Timofeev in 1934 [7]. The properties of a gray spec- 
trum give us that (I -- e,) ~ = i -- c2 and for an oven model C=(I--~)/(21-~) , which gives 

1 - -  e l  + R0 (1 - -  ~ )  (1 - -  82) ( 4 )  
- 

1 - -  ~ ( 1 - -  81) - -  R 0  (1 - -  ~ )  (1  - -  e , )  

T h i s  r e s u l t  i s  d e r i v e d  o n l y  b y  t h e  m e t h o d  o f  m u l t i p l e  r e f l e c t i o n s  [ 2 ] .  F o r m u l a  ( 4 ) ,  w h i c h  
uses 82, is more accurate. At the same time, the form K = i + 6 includes the addition 6, 
which is always positive, to the heat flux due to the reflections from the surfaces. 

The model chain i § 3 is described by (2) also, but with the interpolation factor 

M' el + (I --�9 8,/C) [I -- S (I -- C)] (5) 
13 ~ 

C81 + (1 - -  81) [ I - -  S (1 - -  C)] 
! 

W i t h  S = 1 we g e t  Mz = 1 a n d  c o r r e s p o n d i n g l y  f o r m u l a  ( 3 )  f o r  a b o i l e r  f u r n a c e .  F o r  S = 0 
we g e t  a f u r t h e r  e x t r e m e  r e s u l t  d u e  t o  H o t t e l  [ 1 ] :  

M~ = " 1 - -  81 (1 - -  C)/C (6 )  

t - -  % (1 - -  C) 
6. Body Configuration Interpolation with an Antigray Bulk. The model chain i § 2 is 

described by 

K~_~ = A M~ = A (7) 
A - -  M12A. (1 - -  C) (1 - -  81) ' A - -  (1 - -  S) AoA,C8, 

F o r  a n  i d e a l  b o i l e r - f u r n a c e  m o d e l  we h a v e  S = 1 a n d  M~ ffi 1 :  

K~" = 1 + A ,  (1 - - C )  (1 - - % )  (8 )  
AoC + A,sx (1 - - C )  

The result was published in [3]. For an oven model S = 0 

,, ( 1 - - C )  (1 - - 8 x )  ( 9 )  
A , K ; , = I + A ,  A o C + A , s t ( 1 - - C  CAo) 512 = A -- AoA,Csl 

This result was published in [2]. 

The model chain i § 3 is described by 

K~'-s = 1 + A ,  (1 - -  C) (1 - -  80 M"] s = Ro + AoS. (10 )  
AoC + M'lsA,81(1--C) ' 

I!  

F o r  a n  i d e a l  b o i l e r - f u r n a c e  m o d e l  S = 1 ,  we g e t  M, ffi 1 a n d  c o r r e s p o n d i n g l y  ( 8 ) .  F o r  
t h e  o v e n  m o d e l  3 ,  S ffi 0 ,  M~ = Ro:  

K~ = 1 + A ,  (1--  C) (1--  ~0 (11) 
AoC + A,R0sl  (1 - -  C) 

This particular result is derivable from the formulas of [2]. The coefficients S for the 
different models may be taken as independent of the spectrum and extracted from [i]. 

7. Conclusions from Sections 5 and 6. Formulas (3), (4), (6), (8), (9), (ii) for the 
quantities K', K~, K~, K';, K~, K" can be derived from the zonal equations or by the multiple- 
reflection method. They define the extreme results for the model chains i § 2 and i § 3, on 
which the interpolation methods are based. One can interpolate the results in terms of body 

t | I! t! 
configurations from (2), (5), (7), (i0), which define K,-2, K,-s, K,-a, K,-s. These quanti- 
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ties, whose subscripts are omitted below, are used in interpolating the results with respect 
to the spectrum. 

8. Result Interpolation on Bulk Spectrum. A simple linear interpolation was used in 
[ 2 - 4 ] :  

K = K" + (K" - -  K") c, (12) 

where K'~K" always; i t  was recommended that the interpolation factor should be calculated 
from 

~ -- ~I (13) 

el ( I - -  eO 
according to which it has the meaning of the ratio of the emissivity of the bulk for the in- 
herent and blackbody radiations from it. Formula (13) is exact for a black cold surface F~ 
for any value of A,. Values of c are given in Table 1 for the most important components of 
combustion products, which agree with the data of [8] for specular reflection from the lining. 

The entire set of real spectra can be arranged in a series iB~ermediate in relation to 
the gray and antigray ones. Factor c increases as one approaches the gray spectrum, and 
therefore it may be called the medium grayness parameter. A difficulty is that c is dependent 
not only on the composition of the medium but also on the dimensions and shape of the bulk. 

9. Antigray Spectrum Extrapolation. In [9] we find a method of calculation that has 
become fairly widely used, particularly in the German literature, We consider it a particu- 
lar case based only on the antigray spectrum. Multiple reflections within the bands of the 
real spectrum are incorporated indirectly by increasing the effective thickness of the bulk 
in accordance with Z = Ze/A ~ 

In our treatment, one should use all the formulas of section 6, in which e, is calcu- 
lated from the effective thickness Z. It has been shown [9] that the method as a rule gives 
an error of less than 5%, but in one case an error of 16Z was found. 

I0. Gray-Spectrum Extrapolation. Hottel maximally simplified his spectrum model to a 
gray gas alone and a transport gas alone. In that case, one uses the weight of the gray gas, 
which is dependent on the optical thickness in inexplicit form from 

~o = ~/(2~i -- ~). (14) 

In the proportion so of the black spectrum, the medium i8 considered as gray, while in the 
residual proportion it is considered as transparent. The value of so was especially con- 
sidered in [i0]. If one derives general formulas for K, then at the limits so + 1 or so 
e, one gets the quantities K ! and K" for the gray and antigray spectra. Unfortunately, the 
general formula was written only for a simple oven model 1 [11]: 

K1 . . . . .  CAo 1 1 ~  + el. 
~o A 

The limiting values are obtained correctly. An approximate value may be used for so in this 
formula, which maybe calculated in a way different from (14). Below we use another more ac- 
curate quantity D, which is derived by summing the infinite series that incorporate multiple 
reflection. 

For oven model 2, Hottel gives a formula only for a lining that completely reflects the 
fluxes, A, = 0: 

1 = e~-"!-'t Ro + Ao 1 

I - -  (p + el/(~o - -  ~x) 
where I--~=Fo/F,. 

For eo -~ 1 we get the K~' of section 5. This result is independent of A,. In the anti- 
gray spectrum limit eo § E,, K" is dependent on A,, and therefore the formula on the whole 
is a particular one. Other and more general formulas for this spectrum model are excessively 
complicated. It is therefore undesirable to use this extrapolation method for very simple 
models. 
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Ii. Comparison of Spectrum-lnterpolation Methods. We compare the methods of sections 
8 and 9 on two examples. In the first, as in [8], we consider a planar layer bounded by a 
black cold heating surface and an adiabatic lining. From our method 

K ' = 2 - - ~ 1 ,  K " = I + A , ( 1 - - ~ O .  

Interpolation from (12) and (13) gives the exact result 

K = A, (2 - -  ~1) + R,~/~a. 

The comparison with method 9 should be made for a degree of blackness in the oven or 
furnace space af = AoE,K, since vt in that case is calculated from the effective thickness 
I ffi Ze/A ~ In the case of a black lining, A, = I, and all the methods give the same re- 
sult at = AoE.(2 -- Et), where Et is calculated from Ze. The largest discrepancies are to be 
expected when there is the maximum contribution from multiple reflection, i.e., when A, ffi 0. 
Then at. = Aor2(le) and at9 = AoE,(Z), where I = Ze.i.8025. The discrepancies increase as 
the optical thickness of the bulk decreases, i.e., as the contribution from multiple reflec- 
tions increases, and in the limit they attain i0%. 

In the second case, we consider the ideal model for a boiler furnace i, this being the 
unique case for which one can write the multiple-reflection series without considering the 
layer as planar. According to [3]: 

A (15) KI = 
A (l -- RD)--A, (l --C) (I -- RD --81) 

where the emissivity averaged over the fluxes for the bulk is written approximately for the 
inherent radiation: 

D = V(8 s -- e2)/81 . 
I I! 

Formula (15) enables one to check both interpolatlon methods. The quantities a t and at 
are obtained with D = I -- r and D = 0 correspondingly. For simplicity we put Ao = A, and 
C = 0.5. Then 

On our method 

a [ =  Ao 281 , a t =Ao 2~-----L--1 
Ao + sl (2 - -  Ao) 1 + 81 

On the method of section 9 

2 [ R0 (e~-- el) ] (16) 
- -  81 -~ 

a~ = Ao 1 + 81 A9 + ~t (2 - -  Ao) 

a tg=Ao  2~1(l) 
1 + ~1 (I) 

The e x a c t  fo rmula  i s  o b t a i n e d  from (15) :  

, where l = ~/A ~ . (17) 

a t = A0 2~,1 ( 1 8 )  
1 + 8t - -  RoD 

The r e s u l t s  o f  (16 ) - (18 )  c o i n c i d e  i f  t h e  s u r f a c e s  a r e  b l a c k ,  a s  shou ld  be so i n  any 
case. The discrepancies are largest when the multiple reflections have the largest effect. 
For this we consider the limit ct § 0. Then (c2 -- r § ~I(I -- ez)s D § (i -- et), and our 
approximation of (16) coincides with the accurate result (18): 

at = Ao 281 
Ao + 81 (2 - -  Ao) 

The relative error of method 9 increases as Ao decreases. In the limit Ao § 0, a t § Ao 
2ei (I -~ oo) 

atg-+A~ 1 + ~t(l-+oo) 

As et(Z § oo) -~ i, method 9 does not introduce a large absolute error. We give the numerical 
values: Ao = 0.i, x e = 0.i cm.atm. For carbon dioxide at t = 1000~ we get e. = 0.01, e~ 
(~) ffi s The approximation of (17) gives at = 0.075Ao instead of the accurate 
value Gt = 0.168Ao. The relative error of method 9 is 55%. 
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NOTATION 

U,, a2, as, volume absorptivities for the black incident flux for single, double, and 
triple passage through the volume; e,, e2, es, volume emissivities under the same conditions; 
af, emissivity of the furnace space; qr, resultant flux density, W/m2; K, composite factor 
for multiple reflection from the envelope; A, absorption coefficient (emissivity); R ~ l--A; 
F, surface area, m2; c, interpolation coefficient;Mand S, the same for interpolatien overthe con- 
figuration. Subscripts: O, *, heating and lining surfaces, respectively; i, 2, 3, extrememodels 
for configuration. Primes: values of gray andantigray surface-radiation spectra of the 
bulk medium. 
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A METHOD OF MEASURING THE SHEAR AND ROTATIONAL 

VISCOSITY OF MAGNETIC FLUIDS 

B. M. Berkovskii, V. A. Novikov, 
and A. K. Sinitsyn 

UDC 532.137 

The possibility of determining the shear and rotational viscosity of a magnetic 
fluid in a coaxial viscosimeter by means of two similar measurements of the rota- 
tional velocity of the inner cylinder in the dynamic regime is given a foundation. 

i. The shear state of a magnetic fluid (MF) is determined by two viscosity coefficients, 
shear n, and rotational hr. Up to now, the question of a simple method to measure the shear 
and rotational viscosity in one experiment remained urgent. A method is p roposed~in [l] for 
the determination of n and nr in a coaxial viscosimeter by measuring the velocity of the in- 
ner cylinder and the friction moment of the outer cylinder in the steady-state regime. The 
advantage of the method is that the measurements are performed only in the stationary regime. 
However, measurement of the velocity and friction motion requires different realizations of 
the method from the accuracy and apparatus viewpoints, which is a substantial disadvantage. 
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